

Research Team Overview for USTAR Governing Authority

Presented by: USU USTAR Biofuels Team

Rationale

"The supply of secure, clean, sustainable energy is arguably the most important scientific and technical challenge facing humanity in the 21st century."

Proceedings of the National Academy of Sciences (2006)

- Algae produces far more oil than other feedstocks.
- Algae production doesn't compete w/ food supplies.
- Utah has the resources for large scale deployment.

Summary of Progress

- USTAR hiring process complete
- Extramural awards exceed USTAR investment
- Extensive IP generated and protected
- World-class research facility operational
- Extensive partnerships formed
- Interdisciplinary activities span RD&D
- Scale-up farming activities planned for 2011
- Commercialization entity established

USTAR Biofuels Team

Research

Development

Commercialization

Byard Wood

Lance Seefeldt

Jeff Muhs

Kevin Shurtleff

Allen Shimizu

Ron Sims

Foster Agblevor—Final USTAR Hire

Integrated team spanning research through commercialization

Total FTEs: 20

USTAR Biofuels Program Focus

Goal:

 Develop algae farming technologies to produce affordable renewable liquid fuels and co-products.

Multi-Year Objective:

- Develop self-sustaining biofuels research program.
- Create a technology base for a new industry in Utah.
- Spin-out technologies; production processes and create jobs.

USU innovations / IP to date

- Disclosures filed: 20+; Applications filed: 5; Patents issued: 1
- Discovery of high oil-producing algae strains from Great Salt Lake
- Environmental remediation processes
- Algal production and anaerobic digesters for rural UT dairy operations
- New cultivation and scale-up strategies
- New downstream processing techniques
- New business models and opportunities for Utah companies

USU80 strain being grown in Uintah Basin produced water

Return on Investment

- USTAR investments to date = \$4.5 million
- Extramural funding & awards = \$7.0 million

FUNDED / AWARDED PROJECTS	\$USU/\$Total
Arizona Public Service Company	\$106k
Bingham Research Center (BEERC)	\$75k
General Atomics - DARPA	\$500k/\$40MM
Logan City/Corella Engineering/UDEQ	\$400k +
Montana State University - DOE	\$150k/\$900k
Oak Ridge National Laboratory-DARPA	\$207k/\$750k
DOE – Office of Solar Energy Technologies	\$1.33M
DOE – Office of Biomass Programs (awarded; not yet under contract; expected release Nov. 2010)	\$4.35M

State of the art USTAR-funded Facility

Kevin Shurtleff

UtahStateUniversity

Algal Biodiesel Project Flow

Organisms

Nutrients

Growth

Dewatering

Biodiesel

Co-products

USU80 GSL strain

DARPA Algae-to-JP8 Finalist

30+ strains high salt high pH high lipids

Lance Seefeldt

GSL Collaboratory

USU Algae in Produced Water

Achieved better growth in produced water than in lab media

Simultaneous lipid production & water remediation demonstrated @ USU

EDL will use power plant flue gas & existing ponds

Kevin Shurtleff

Jeff Muhs

10 acre facility planned in 2011

USU 1 Step Conversion Process

Lance Seefeldt

Working with U of U on by-product to biooil conversion

Negotiating with detergent & by-product OEMs

Example Collaboration

Mountain/Southwest Algae to Fuel Enterprise MSAFE Proposal (\$45 Million); response to USDA RFP

Research, education & extension program to design a sustainable bioenergy co-op farm system to produce sufficient algae to operate a refinery that produces 40 million gallons per year of liquid fuels.

- ➤ MSAFE Team, led by USU, includes 8 Universities, National Lab, Logan City, and 4 industry partners; leverages \$50 million in algal research last 5 years;
- ➤ Region has abundant low temperature geothermal heat for year around operations and large tracts of low value land;
- ➤ Adequate saline/brackish water and CO₂ sources;
- ➤ Excellent solar energy resources.

Byard Wood

Biogas from Dairy Cow Manure: Sunderland Dairy Digester System

- Original Plan was to build an experimental IBR digester facility at a cost of \$1.5 Million.
- Sunderland Dairy, Ephraim, UT
 - USU, USTAR, USDA, Dairy redesigned, repaired, and upgraded system;
 - 2 USU IBR and 2 vertical tank digesters operating side-by-side;
 - 42 KW connected to utility grid.
- No USTAR funds were used for capital improvements

Sunderland Dairy (cont.)

- Annual IBR biogas production 34% greater than competing technology for conditions tested, experiments will continue through next year;
- Used Ferric Chloride as low cost H₂S control;
- Heat recovery on digester effluent;
- Results will be directly applicable to marketing USU's IBR technology;
- Lab tests have shown that digester effluent is good source of nutrients for growing algae;
- This was a win/win for
 - USTAR USDA USU Sunderland Dairy

Logan Wastewater Treatment & Biofuel Production Project

- Wastewater treatment plants
 - natural algae growth
 - release nutrients (phosphorous and nitrogen)
- Solution: Biofuel production w/ wastewater treatment
 - phosphorous removed by enhancing algal growth
 - algae harvested before discharge to Cutler Reservoir
 - algae processed in IBR to produce biogas

Ron Sims

Sustainable Waste-to-Bioproducts Engineering Center

- Collaboration: USU and Logan City (Environmental Dept.)
 - Logan Wastewater Treatment Lagoons
 - Logan City Sanitary Landfill (Solid Wastes)
 - USU Research Laboratories
- Bio-products
 - Biodiesel
 - Biogas
 - Bioplastics (aka petro plastics)

- Fertilizer & Soil Conditioner
- Antioxidants from Algae

Commercialization

- Algal Energy Technologies Group: formed Sept10 as dba of Foundation Development Corp. (USURF)
- Three focus areas: Services, Oil Production, Wastewater Remediation
- Planned Spin-out: Sep11

Deliverables for FY11

- 90 lbs of algal biomass complete
- 10L of algal oil
- Demonstrate floating pond cultivation and cold weather growth
- Validate pH control with flue gas addition
- Validate new techniques for algae harvesting/extraction
- Foster Agblevor (Final USTAR Hire) start-up activities
- Three or more new contracts/agreements; Opportunities include:
 USDA MSAFE proposal, Desert Generation & Transmission (DGT) 10 acre
 facility, General Atomics Phase II, Sun Products (detergents); Hydromentia (waste
 water treatment), additional work with Logan City through new partnership

USTAR Budget FY11 and beyond

<u>Budget</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	
Personnel	578,000	600,000	356,200	239,026	
Travel Other Capital Assets	55,000	55,000	81,786	85,439	
Equipment	119,800	105,000			
<u>Total</u>	752,800	760,000	537,986	324,455	
			UtahState University		

<u>Budget</u>	<u>2007</u>	<u>2008</u>	<u>2009</u>	<u>2010</u>
Personnel	174,423	684,301	624,966	491,884
Travel	11,641	79,843	26,192	20,511
Equipment	75,058	171,982	103,987	741,654
<u>Total</u>	348,686	1,278,942	1,004,129	1,588,036